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Abstract—Ground penetrating radar (GPR) uses electromag-
netic (EM) wave to detect the subsurface objects. Interpretation
and analysis of GPR signals are still challenging tasks as it
requires skilled user (geologists in most cases). Particularly
difficult is the prediction of the object sizes. This paper proposes a
new method for predicting size of buried objects. First, standard
scaling pre-processing techniques are used to optimise the B-Scan
data. The features are then supplied to Random Forest (RF)
and Support Vector Machine (SVM) classifiers to automatically
predict the size of the buried object. The proposed feature
based RF classifier shows similar performance in the accuracy of
classification compared to SVM (Radial Basis Function kernel)
system.

Index Terms—machine learning, classification, object size pre-
diction, ground penetrating radar

I. INTRODUCTION

Ground Penetrating Radar (GPR) is used to detect sub-
surface objects with high resolution.GPR transmits High fre-
quency electromagnetic wave through the ground at a velocity
depending upon the dielectric property of the material [1].
Ground penetrating radar can be used to uncover hidden
sources of disaster [2]. Consequently, it has been used in some
applications such as estimation of bridge state of deterioration
[3], soil surveys [4], pavement and sub-pavement structure
diagnosis [5]. GPR can be used for investigation of tree root
biomass which helps in soil amelioration, water infiltration,
and prevention of erosion [6]. In short, GPR has applications
in a varied fields like environmental, archaeological, civil
engineering, military, geophysical and so on [7].

The interpretation of the collected GPR data requires highly
skilled human operator along with experience. Also the sub-
surface signals contains noises which cannot be removed
completely. These problems led to growing interest in the
development of automated subsurface object detection and
identification technique. One of the most significant way of
meaningful physical interpretation of GPR data is the usage of

machine learning algorithms. Applications of machine learning
in GPR data interpretation includes automatic material classi-
fication of underground objects [8], detection of Landmines
[9], [10], image processing for recognition of GPR data [11],
predicting geometry of buried object [1] and many more.

Aim of present work

A lot of research work has been done in this field but pre-
diction of size of the buried objects in different environmental
conditions remains to be carried out extensively. [1] mainly
concentrates on the size of basic objects (rectangle, circle
and triangle) but with very few scenarios (<50). Moreover,
the model uses a single classifier and does not compare its
performance with other classifiers. This paper mainly focuses
on -

1) Prediction of size of cylindrical object in 100 different
scenarios.

2) Prediction of object size is done using both Random
Forest and Support Vector Machine classifiers.

3) Test results of both the classifiers are compared to obtain
the best fitted model.

II. GPR DATA

Fig. 1. Simulated model
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A. Database Creation

The samples are created by using the electromagnetic sim-
ulator gprMax. gprMax is an open source software devel-
oped by researchers at the University of Edinburgh which
simulates electromagnetic wave propagation for numerical
modelling of Ground Penetrating Radar (GPR). It is based
on Finite-Difference Time-Domain (FDTD) method [12]. The
simulations are further accelerated using NVIDIA’s CUDA
framework [13].

Before simulation, several parameters have to be set to
create a scenario. One of the models generated after simulation
is shown in Figure 1.

The size of the model is 1000 × 148 × 400 (X × Y × Z)
mm. The height of the model is 400 mm of which the top 50
mm layer is air and the remaining 350 mm is a soil layer. An
object is buried at a depth of 294 mm from the surface of the
soil layer. The object is a metallic cylinder made of aluminium
(εr = 10.8, σ = 3.5× 107 Siemens/metre).

A total of 100 scenarios are created for 10 soil types and
10 object radii. The parameters used for creating the various
soil types are shown in Table I

TABLE I
SOIL PROPERTIES

Sl. No. Soil Type Conductivity
σ (S/m)

Relative permittivity
εr

1 Dry, sandy, flat (coastal) 0.002 10
2 Pastoral Hills, rich soil 0.007 17

3 Pastoral medium hills
and forestation 0.005 13

4 Fertile land 0.002 10

5 Rich agricultural land
(low hills) 0.01 15

6 Rocky land, steep hills 0.002 12.5

7 Marshy land, densely
wooded 0.0075 12

8 Marshy, forested, flat 0.008 12

9 Mountainous / hilly
(to about 1000 m) 0.001 5

10 Highly moist ground 0.01 30

The object radius is changed from 10 mm to 55 mm.
Parameters for the FDTD simulation are listed in Table II.
Time window must be large enough to allow the EM waves

TABLE II
SIMULATION PARAMETERS

Parameter Parameter value

Time Window 7-14 ns
Frequency 1500 MHz
Excitation Waveform Type Ricker
Spatial resolution 2 mm
A-Scan internals 5 mm
No of A-Scans 100

to propagate from the Tx antenna through the soil, reflected
back by the buried object and received by the Rx antenna.

Its value primarily depends on the depth of the object and
soil properties (εr & σ). Hence, 5 values of time windows are
calculated for different values for εr of soil as given in Table
III

TABLE III
TIME WINDOW VALUES

Time Window (ns) Soil εr

7 5
9 10

10 12, 12.5, 13
11 15, 17
14 30

All simulations are accelerated using NVIDIA GPUs P100,
T4, K80 and P4 through use of the NVIDIA CUDA program-
ming environment. To save computation time, only 100 A-
Scans are taken, which are enough to display the target object
completely. As a reference, Figure 2 shows B-Scan (120 A-
Scans) of an object buried at 270 mm below the soil surface.
Each B-Scan, comprising of 100 A-Scans took 30-58 minutes
depending on the GPU alloted.

Fig. 2. A simulation result

III. DATA PREPROCESSING

The B-Scan data generated by gprMax uses HDF5 file
format. All 100 B-Scan files are read and stored in a two
dimensional (2D) array. The array consists of A-Scans, Soil
σ, Soil εr, Object Radius, Object Depth, Object εr and Object
σ. Since there are a large number of A-Scans and features
with large variations, the data is normalised and redundant data
removed to reduce computational requirements. The reduced
dataset has little more than 8 million data-points which is then
split into train-test set in 80:20 ratio.

IV. CLASSIFICATION & PREDICTION

A. Hyperparameter Tuning:
Hyperparameters are the variables in a machine learning

algorithm that govern the whole training process. In Random



Forest classifier, two hyperparameters are generally consid-
ered, viz. the number of features considered by each tree while
splitting of a node and the number of trees in the forest. But
these parameters must be set manually before training and it’s
impossible to determine the hyperparameters ahead of time.
Hyperparameter tuning makes this process of determining the
best hyperparameters for a given model much easier and less
tedious. It works by running multiple trials in a single training
job and optimises the performance of the model.

B. Cross Validation:

Optimisation of model for the training data leads to very
high performance of the model only on data for training but
may show poor performance on test set. Cross validation (CV)
can be used to solve this problem.

One of the commonly used methods for Cross Validation is
K-Fold CV. In this method, the dataset is split into k different
subsets. The model is trained for k-1 subsets and the last subset
is used a test set. This process is done k times with each time
having different combinations of subsets for train set and test
set, as shown in Figure 3. The average performance for each
fold is obtained and the model with the best performance score
is finalised.

Fig. 3. Visualisation of 5-fold cross validation

For 5-Fold CV , the dataset is split into 5 subsets. In the
first iteration, the model is trained on last 4 folds and evaluated
on the first fold. In the second iteration, training is done on
the first, third, fourth and fifth folds and evaluated for the
second fold. This process is repeated 3 more times, validating
a different fold each time. When the training ends, the average
of performance of each fold is obtained to come up with the
final validation. Each training and testing iteration is given a
score based on accuracy. In a multi-class problem, the fraction
of correct predictions (acc) over msamples is defined as [14],

acc(y, ŷ) =
1

msamples

msamples−1∑
j=0

1(ŷj = yj) (1)

Here,
y is the set of true pairs,
ŷ is the set of predicted pairs,
yj is its true value,
ŷj is the predicted value, and
1(x) is the indicator function

A 5-fold cross validation is performed on both Random
Forest and SVC (RBF) classifiers to tune their respective
hyperparameters. For Random Forest, the number of trees
(estimators) and their quality of split are the hyperparameters
that are tuned. In case of SVC (RBF), C and gamma values are
tuned. The gamma parameter describes the extent of impact
of a training sample. High and low values of this parameter
imply ‘close’ and ‘far’ respectively. The C parameter tries
to balance between decision function’s margin and correct
classification of training samples. Smaller margin will be
considered for larger values of C, if the decision function is
better in classifying all the training samples correctly. A lower
value of C will implies a larger margin, and hence a simpler
decision function, compromising the training accuracy [14].

The performance scores of different values of hyperparame-
ters for Random Forest and SVC (RBF) classifiers are shown
in Figures 4 & 5 respectively. It is seen that an estimator
size of 100 with entropy criteria for split quality give the
best performance score of 0.9993. On the hand, C=100 and
gamma=0.1 give the best performance score of 0.9995 for SVC
(RBF).

Fig. 4. CV scores with varying hyperparameters in RF classifiers

TABLE IV
PERFORMANCE OF DIFFERENT CLASSIFIERS

Classifier Accuracy F Measure Mean Squared
Error R Squared

Random Forest
(estimators = 100) 99.97% 1.00 0.02106 0.9998

SVC-Linear 11.5% 0.09 455.7091 -1.2375
SVC-RBF
(C=100, gamma=0.1) 99.95% 1.00 0.0016 0.9999

Performance characteristics of the best optimised model of
each classifier are shown in Table IV. When using all 10
classes, the confusion matrix obtained from Random Forest
classifier with 100 estimators is shown in Figure 6, where the
true class labels are listed along the y-axis and the Random



Fig. 5. CV scores with varying values of hyperparameters in SVC (RBF)

Forest class predictions along the x-axis. Like wise, confusion
matrix of SVC (RBF) classifier is shown in Figure 7.

Fig. 6. Confusion matrix for Random Forest classifier

V. CONCLUSION

In the confusion matrix of RF classifier, it can be seen that
1 sample of radius 10 is wrongly predicted as radius 15. On
the other hand, in SVC (RBF) classifier, 1 sample of radius 50
is wrongly predicted as radius 55. It is seen that both Random
Forest and SVC (RBF) classifiers give similar performance
results. However, SVC (RBF) classifier has a little better error
margin with a mean squared error of 0.0016 and R2 = 0.9999.
All the 10 sizes of buried objects are correctly predicted by
both Random Forest and SVC (RBF) classifiers with >99.90%
accuracy and >99.90% precision.

A. Limitations

The present work demonstrates machine learning applica-
tions in predicting size of buried objects. However, the model

Fig. 7. Confusion matrix for SVC (RBF) classifier

can predict the size of the object from among a limited number
of values (object radius). Real life scenarios will have have
objects with custom sizes and shapes. Additionally, the present
model has to be verified experimentally by implementing it on
a hardware system.

B. Future Work

The authors plan to improve the proposed model by:
• Generating more datasets by varying other features such

as object material, object depth, object shape and so on.
• Implementing and validating the proposed model on a

hardware system, being developed by the authors.
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