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Abstract— The first and foremost process in tea manufacturing,
withering, is the foundation for producing good quality. Moisture
plays an important role in the manufacturing process of tea to get
the desired quality. In this paper, a novel in situ instrumentation
technique is proposed and validated experimentally for prediction
of moisture loss (ML) in the withering process. In the proposed
technique, ML is predicted based on the inlet and the outlet
relative humidity (RH) and temperature during the process of
withering. Network capable smart sensor nodes are developed
for the measurement of RH and temperature at the inlet and
outlet of the withering trough. Architecture of the nodes and
network is described. A scaled-down prototype of an enclosed
trough is developed to perform withering of tea leaves. Based
on the data measured by the system, ML is predicted by using
artificial neural network. Nonlinear autoregressive model with
exogenous inputs is used for predicting the ML. The predicted
ML is compared with the actual amount of ML measured by
weight loss. A total of nine experiments are conducted for nine
batches of tea leaves. The data collection, their analysis and
results are reported in this paper. The observed result shows
a good agreement between the predicted and actual ML. The
maximum mean error in prediction is −3.6%.

Index Terms— Artificial neural network (ANN), humidity
measurement, moisture, moisture measurement, temperature
measurement.

I. INTRODUCTION

TEA is one of the most popular beverages in the
world [1], [2]. Different types of tea have different phys-

ical appearances and quality attributes which involve different
kinds of processing methods [3]. Based on the variations in
processing steps involved in tea manufacturing, tea can be
classified into six different types, viz. green tea, yellow tea,
white tea, Oolong tea, black tea, and postfermented tea [4].
The process “withering” is common for the manufacture of
all types of tea except green and yellow tea. Withering,
the first step of processing is the foundation for achieving
good quality in produced tea. In withering, both physical
and chemical processes are involved in which freshly plucked
leaf is conditioned physically, as well as, chemically for
subsequent processing stages. The physical withering reduces
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the moisture content (MC) of the fresh leaf which is expressed
in percentage. Percentage of wither is defined as the weight in
kilogram to which 100 kg of leaf is reduced at the end of the
withering [5]. Moisture from the fresh tea leaves is reduced in
a controlled manner so that the withering of tea leaves reaches
a level of 74%–83% within the time required for chemical
wither to complete which is normally about 12 to 16 h. Correct
level of withering is essential for quality of produced tea,
although, it has always been a difficult task to determine the
endpoint of withers. Physical withering also makes the leaf
“flaccid” or “rubbery” which is essential for the subsequent
steps of processing [5].

Chemical withering starts immediately after plucking of tea
leaves. It involves several chemical processes like release of
carbon dioxide and water due to break down of larger mole-
cules. The process also involves changes in enzyme activity
and partial break down of proteins to amino acids which
act as precursors for aroma and increase in caffeine content.
This contributes toward briskness and production of volatile
flavor components. Some of these compounds contribute to
the grassy odour and others are responsible for the flowery
aroma and reduction in chlorophyll content. The mentioned
chemical changes are all intrinsic to the biochemical structure
of the leaf, but the range and the extent of the reactions
depend on the breed commonly known as jat, cultural practices
and physical parameters like temperature and humidity. The
chemical changes also contribute to the quality attributes of
tea like the “body” and the “flavour” [5].

The quality of the final product is highly influenced by the
withering process. Influence of withering, including leaf han-
dling, on the manufacturing and the resulting quality of black
tea was reported [6]. The duration of withering plays a vital
role which contributes to some biochemical properties and
sensory quality attributes of the final product. Chemical wither
for longer period produces liquor with better flavor and fuller
cup characters [7]. Various biochemical processes take place
during withering of black tea production. The characteristics
of phenol oxidase, i.e., the main enzyme of tea production and
its hydroxylase and catechol oxidase activities are responsible
for the main transformation of phenol compounds determining
the quality of the product. Modified technologies excluding
withering cannot provide high quality product [8].

Due to various advantages such as controlling the withering
speed or making uniform withering by controlling speed and
its direction of airflow, trough withering is widely used all
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over the world. The troughs are of two types—(a) open trough
and (b) enclosed trough [9]. However, attempts are going
on for the improvement of troughs such as the one reported
in [10], where withering was completed within 6 h. But it
affects the biochemical pathway.

Since withering plays an important role in the final product,
various attempts have been made to measure the percentage
of wither using different techniques. In one such technique,
the weight loss method is used where a representative section
of the withering trough was used for the measurement [11].
In another method, the measurement of MC in tea is performed
by the microwave transmission technique. The change in ratio
of amplitude and phase shift determines the MC [12]. The
capacitive fringe-field method is also used for the detection
of MC of tea leaves at its final stage [13]. Drying rate
is an important factor in estimating the withering of tea
leaves. Drying curves of withering thin layer are reported [14],
but the effect of relative humidity (RH) was unreported in
the experiment. RH has a major role on withering of tea
leaves [15]. A method to use temperature and humidity sensor
for determining MC of Oolong tea by equilibrium RH and
equilibrium MC was reported [16]. The techniques that are
discussed have difficulties in online and in situ applicability in
withering. Moreover, in all the approaches mentioned above,
a representative sample from the trough or the process was
selected for the measurement instead of considering the whole
trough.

Because of the complex mechanism of moisture release by
tea leaves and the use of large area troughs for withering,
it is very difficult to predict the ML in withering. Level of
withering is basically determined by human experts. To inves-
tigate the in situ and online feasibility and applicability
for measuring ML in withering of tea, an instrumentation
technique is proposed in which no representative sample is
necessary, instead the whole trough is under consideration
without any major modification of existing troughs of enclosed
type. A scaled-down prototype of enclosed type trough is
developed and two sensor nodes, each node consisting of a
temperature sensor and an RH sensor, are installed to measure
the temperature and the RH. Sensor nodes are placed at
the inlet and the outlet of the air flow path of the trough.
A load cell with proper signal conditioning and mechanical
arrangement is also installed to obtain the weight loss of the
tea leaves during withering.

In withering, the moisture removal process is accomplished
by vaporizing the water contained in the tea leaves; and
to do this the latent heat of vaporization must be supplied.
There are two important process-controlling factors: transfer
of heat to provide the necessary latent heat of vaporization and
movement of water or water vapours through the tea leaves to
separate the moisture.

The necessary latent heat of evaporation is achieved from
the inlet temperature of the incoming air. The moving air
carries evaporated water vapour toward the outlet of withering
trough which raises the level of RH at the outlet compared to
that at the inlet.

Moisture release from the leaves starts from the surface and
later on is governed by diffusion or capillary movement [17].

Withering is a complex process, in which the release of
moisture from the leaf is governed by many factors involving
complicated mechanisms. Effects of temperature, RH, and air
speed are more significant compared to other factors.

Since ML in withering process is highly nonlinear, ordinary
statistical methods are not suitable for predicting ML. As a
tool for prediction, ANN works well where other methods
do not, and have been applied in solving a wide variety of
problems that are not well suited for classical methods of
analysis. ANN is a data-driven model [18] and it can be used
in extremely complex nonlinear problems [19]. Due to the
ability of realization for complex nonlinear mapping of mul-
tidimensional interrelated input and output parameters ANN
provides excellent prediction model compared to expert sys-
tems or its statistical counterpart [20]. Different structures of
ANNs are used depending on the type of application require-
ments including the food and agriculture industry [21], [22].
Application of ANN in prediction or forecasting of time
series is broadly presented in [23]–[27]. For nonlinear system
identification or modeling, the nonlinear autoregressive models
with exogenous input (NARX) network is mostly used [28],
which is computationally equivalent to Turing Machines [29],
due to its capability of dynamic modeling [27]. Its applications
in various modeling problems are available in [27] and [29].

Withering of tea leaf is a dynamic process and ML at
a particular instant depends upon the amount of ML in its
previous instants. Due to its suitability in modeling dynamic
nonlinear systems and specially time series, NARX network
is adopted for predicting the ML in withering process of tea.
Difference of RH in the outlet and inlet, the inlet temperature
and time are considered as the predictor for determining the
ML (which is the response) in the withering process. Predicted
amount of ML is compared with the actual amount measured
by weight loss.

II. SCALED-DOWN PROTOTYPE OF ENCLOSED TROUGH

A scaled-down prototype of enclosed type withering trough
is designed with dimension (30 cm×19 cm×14 cm) as shown
in Fig. 1(a). The bed of the trough for loading tea leaves is
made of a plastic net of 5-mm grid size and is placed on top of
a load cell arrangement to measure the weight loss of loaded
leaves during withering. To avoid errors in the measurement
of weight, a small container of PVC is attached to the net so
that the loaded leaves do not come into contact with the side
walls of the trough. To maximize the passage of air through the
loaded leaves, the container is surrounded by aluminum sheet.
A fan is attached to the trough so that air flows through circular
holes (3-cm diameter) at the inlet and the outlet. To measure
temperature and RH both at the inlet and the outlet, two sensor
nodes are attached. One at the inlet and the other one at the
outlet. The photograph of the experimental setup is shown
in Fig. 1(b).

III. INSTRUMENTATION SYSTEM

The instrumentation system consists of sensors, data acqui-
sition, and logging. The sensing parameters are temperature,
RH, and weight of loaded leaves. Two sensor nodes capable
of measuring RH and temperature are incorporated in the
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Fig. 1. (a) Prototype of enclosed withering trough showing different parts. (b) Photograph of the prototype.

Fig. 2. Block diagram of withering trough instrumentation.

system to measure temperature and RH at the inlet and the
outlet of the air flow path. A load cell, with associated signal
conditioning circuits, is used to measure the weight of loaded
leaves in the trough. Two microcontrollers with built-in 10-bit
analog-to-digital converter (ADC) are used to read the voltage
output of the sensors. The system is connected to a personal
computer (PC) by RS485 communication to facilitate for data
logging. The block diagram of the system is shown in Fig. 2.

A. Sensor Node

The sensors used in the node are LM35C [31] for mea-
suring temperature and HIH5030 [32] for RH. The output of
HIH5030 is dependent on the supply voltage. To get a stable
supply voltage, a reference voltage generator MCP1541 [33]
along with buffer made of TLC272 [34] operational amplifier
is used. The accuracy of the temperature sensor, LM35C,
is ±1.5 °C and its operating range is −55 °C to +150 °C. The
operating range of RH sensor, HIH5030, is 0% RH to 100%
RH within the temperature range of −40 °C to +85 °C. The
accuracy of RH measurement is ±3% in the operating range

Fig. 3. Circuit schematic of sensors in node.

of 11% RH to 89% RH, whereas ±7% in the range of 0% RH
to 10% RH and 90% RH to 100% RH. The circuit schematic
of sensors in the node is shown in Fig. 3.

The output voltage Vout2 (RH) (Fig. 3) and RH is related
by the following equation at 25 °C [32]:

RH =
Vout2(RH)

Vs
− 0.1515

0.00636
. (1)

The true RH requires temperature correction and is given by
the following [32]:

True RH = RH

(1.0546 − 0.00216T )
% (2)

where T is the measured temperature in degree Celsius.
The RH sensor and the temperature sensor are assembled

close to each other to minimize the temperature gradient
between them.

B. Load Cell Signal Conditioning and Weighing Arrangement

The signal conditioning circuit for the load cell (full bridge)
is shown in Fig. 4. The circuit composed of LM336-2.5N [35]
precision shunt diode, TLC272 dual operational amplifier,
and AD620 [36] instrumentation amplifier. The load cell is
excited by 2.5 V. The excitation voltage is obtained from
a shunt regulator diode, LM336-2.5. The TLC272, precision
dual operational amplifier is configured as unity gain amplifier
to drive the load cell.
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Fig. 4. Signal conditioning circuit for load cell.

Fig. 5. Calibration of weighing system.

Fig. 6. Residual versus independent plot for weighing system calibration.

The shunt regulator diode, LM336-2.5, gives 2.5 V within
the temperature range of 0 °C to 70 °C with 0.2-� dynamic
impedance. The bridge output is amplified by an instru-
mentation amplifier, AD620, where the voltage gain is set
to 495 using a 100-� precession resistor of 0.1% tolerance
and temperature coefficient ±5 ppm. The gain equation is [36]

G = 49.4 K�

Rg
+ 1 (3)

where G is the gain of the amplifier and Rg is the gain setting
resistor.

The system is calibrated by known loads. The output (Vout3)
for different loads are measured using a 6(1/2) digit digital
multimeter (Agilent, model no: 34401A) and recorded. Using
the data obtained for various loads, a calibration curve is
obtained and is shown in Fig. 5.

The linear fit calibration equation is

y = 1.641x + 499.8 (4)

where y is the output voltage of the weighing system in
millivolt and x is the applied load in grams.

The sensitivity of the system is 1.641 mV/g. The residual
versus independent plot is shown in Fig. 6.

Fig. 7. Flowchart for the implemented algorithm in microcontroller.

IV. DATA ACQUISITION SYSTEM

In a sensor node, the outputs of sensors are connected to
two channels of built-in 10-bit ADC of an ATmega8 [37]
microcontroller. There are two such nodes in the system, which
are used for measuring RH and temperature. The output volt-
age (Vout3) from the signal conditioning circuit of the load cell
is connected to one 10-bit ADC channel of another ATmega8
microcontroller. The microcontrollers are connected to a PC
by RS485 network. An algorithm is developed for reading
the output voltages of sensors, compensating the effect of
temperature in RH measurement and finally sending the data to
PC in proper format. The developed algorithm is implemented
in ATmega8 microcontroller by writing suitable C-code in
Atmel Studio4 integrated development environment [38]. The
temperature compensation is done using (1) and (2). To log
the received data in a PC, a program is written in C language.
Data is stored in PC in. XLS format along with records of
date and time. Figs. 7 and 8 show the flowchart of developed
algorithms that are implemented in the microcontroller and
the PC, respectively.

V. NONLINEAR AUTOREGRESSIVE MODEL

WITH EXOGENOUS INPUTS

ANN has proved to be a very powerful tool for performing
predictions and forecasts due to their prominent advantages for
approximating nonlinear function and data-driven capability
of forecasting and prediction [19], [20]. ANN architectures
are widely classified as feed forward networks (FFN) and
recurrent neural networks (RNN). In FFN, information flows
only in one direction, from the input layer via some hidden
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Fig. 8. Flowchart for the implemented algorithm in PC.

Fig. 9. Feed forward network.

layers to the output layer. Since there is no feedback (loop),
output of any layer does not affect the same or preceding
layer (see Fig. 9). RNN are different from FFN in the sense
that these networks contain at least one feedback loop from
any layer, which may also be a self-loop (see Fig. 10).

FFN networks are appropriate for any functional mapping
problem where a set of responses or output variables are
affected by a set of predictors or input variables.

In the RNN computations derived from earlier input are
fed back into the network, which comprises memory in the
network. Feedback networks are dynamic i.e., their “state”

Fig. 10. Recurrent neural network.

changes in every iteration until they get a stable state. When
input changes a new stable state needs to be established.
RNN are suitable for modeling or predicting one or more out-
puts (or response of processes) in which output (or response)
changes dynamically or the value of outputs (or responses) are
dependent on earlier state(s) of both inputs or predictors and
outputs (or responses).

NARX [28], [30] is an important class of recurrent nonlinear
dynamic network, with feedback connections enclosing several
layers of the network that can be mathematically represented
as [28]

y(n + 1) = f [(y(n), y(n − 1), . . . , y(n − dy + 1));
(u(n), u(n − 1), . . . , u(n − du + 1))] (5)

where, u(n) ∈ R and y(n) ∈ R denote, respectively, the input
and the output of the model at discrete time step n, while
du ≥ 1 and dy ≥ 1, du ≤ dy , are the input-memory and the
output-memory orders. In a compact vector form, (4) can be
represented as [28]

y(n + 1) = f [y(n); u(n)] (6)

where the vectors y(n) and u(n) denote the output and input
regressors, respectively.

The nonlinear mapping f (.) is generally unknown and
can be approximated, for example, by a standard multilayer
perceptron network. The resulting connectionist architecture is
then called a NARX network [29], [38], [39].

NARX has two architectures: series-parallel (SP) and par-
allel (P). In SP mode, the output’s regressor is formed only
by actual values of the system’s output. In case of P mode,
estimated outputs are fed back and included in the output’s
regressor [27], [39].

Since the true output is available during the training of the
network, SP architecture is used in which the true output is
used instead of feedback from the estimated output, as shown
in Fig. 11. Two advantages for doing this are: 1) the input to
the FFN is more accurate and 2) the resulting network has a
purely feed forward architecture, and static back propagation
can be used for training.
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TABLE I

CONFIGURATION OF NARX NETWORK

Fig. 11. SP architecture.

Fig. 12. P architecture.

Fig. 13. Actual and predicted MLs along with absolute errors in
prediction (Data set 1, Experiments 1 and 9).

For prediction, P architecture is used where estimated output
is fed back to the input as shown in Fig. 12 [40].

VI. EXPERIMENTAL METHOD AND RESULT

Fresh tea leaves have been collected from two different
gardens. The collected leaves from the first garden are the
combination of single leaf and two leaves and a bud whereas
leaves collected from the second garden are mostly two leaves
and a bud. Withering of tea leaves have been conducted by
running the fan at a constant speed after loading the developed
rough. The air flow rate has been kept constant at 0.25 m3/s.
The process has been continued at the ambient temperature
and RH. Temperature and RH at the inlet and outlet have been

Fig. 14. Actual and predicted ML along with absolute errors in
prediction (Data set 2, Experiments 1 and 2).

Fig. 15. Actual and predicted ML along with absolute errors in
prediction (Data set 3, Experiments 2 and 3).

recorded by the data acquisition system at intervals of seven
seconds. The amount of weight loss of the leaves obtained
from the load cell was also recorded by the data acquisition
system.

A total of nine batches of withering have been done out of
which four batches have been done for the leaves collected
from the first garden and the others from the second garden.
The actual ML of the leaves is obtained by the weight loss
method in which ML at an instant is obtained by subtracting
the weight of the leaves at that instant from its initial weight.
A NARX network has been configured to predict ML in
withering. The predicted and the actual ML (measured by
weight loss method) are compared and analyzed.

A. Data Preparation
The parameters recorded in the process of withering are

inlet temperature (Ti ), inlet RH (RHi ), outlet temperature (To),
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TABLE II

TRAINING PARAMETERS

Fig. 16. Actual and predicted ML along with absolute errors in
prediction (Data set 4, Experiments 3 and 4).

Fig. 17. Actual and predicted ML along with absolute errors in
prediction (Data set 5, Experiments 4 and 5).

outlet RH (RHo), moisture loss (ML), and time (t). To predict
ML the parameters used are time (t), inlet temperature (Ti),
and the difference of RH (RHd) which is obtained by sub-
tracting the inlet RH (RHi ) from the outlet RH (RHo),
that is

RHd = RHo − RHi . (7)

Before using the data sets for training the network, moving
average of 256 data points i.e., 1792 s (approximately 30 min)
are taken for all the parameters. For training the network,
SP architecture (Fig. 11) of NARX network is used. For
predicting ML P architecture (Fig. 12) of NARX is used.

Fig. 18. Actual and predicted ML along with absolute errors in
prediction (Data set 6, Experiments 5 and 6).

Fig. 19. Actual and predicted ML along with absolute errors in
prediction (Data set 7, Experiments 6 and 7).

B. Configuration of the NARX Network and Training

The NARX network used for training is composed of
two layers. The network is configured as shown in Table I.
The number of nodes in the hidden layer is chosen in such a
way that there is minimum chance of over-fitting and under-
fitting. Since the input and output of the process are nonneg-
ative and nonlinear, log-sigmoid activation function is used in
hidden layer. In the output layer, only one node is used and
purely linear (purelin) activation function is used. Levenberg–
Marquardt backpropagation is choosen for training, because
it is the fastest back propagation algorithm for supervised
learning, although it requires more memory space compared
to other training algorithms.
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TABLE III

MEAN ERROR WITH RESPECT TO FULL SCALE

Fig. 20. Actual and predicted ML along with absolute errors in
prediction (Data set 8, Experiments 7 and 8).

To train the network, the actual ML measured by the weight
loss method is used as the target output. Training of the
network is considered to be completed when it achieves the
required goal of attaining the set value of the mean-squared
error.

C. Prediction of ML

A total of nine experiments has been conducted for pre-
dicting ML in withering. In each experiment two data sets of
nine have been selected for testing and the remaining seven
data sets have been used for training the network. The trained
networks have been used to predict the ML in withering.
To use the trained NARX network for prediction of ML
in withering, it has been changed into a P architecture of

Fig. 21. Actual and predicted ML along with absolute errors in predic-
tion (Data set 9, Experiments 8 and 9).

NARX network by adding a closed loop i.e., a feedback from
predicted output to the input (see Fig. 12). The details of the
training parameters are shown in Table II.

Actual and predicted MLs along with absolute errors in
prediction for the nine experiments are shown in Figs. 13–21.
Each data set has been tested in two different experiments by
using different training data set.

The trends of actual MLwith time is nonlinear and the
predicted ML follows the trend of actual ML.The mean errors
with respect to full scale is given in Table III.

The maximum mean error in prediction is −3.6%
(Experiment 9, data set 9). The experiments are conducted in
different ambient RH and temperatures. Also the leaf qualities
in the experiments are different. Experimental results show
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that the proposed technique for the prediction of ML works
satisfactorily for different ambient conditions and different
quality of tea leaves.

VII. CONCLUSION

Using the developed measurement system, distribution of
temperature and RH in the withering trough (prototype) is
measured online. The provided network capability of the
measurement system implies that the system can be extended
to a larger size withering trough used in tea factories which
is generally 100 to 120 feet (30 to 36 m) in length and
10 to 15 feet (3 to 5 m) in width. Also, there is a possibility of
configuring the nodes as smart sensor. The accuracy of mea-
surements are 1.5 °C for temperature and ±3% for relatiive
humidity.

In the reported technique, ML is predicted based on RH
and temperature in withering using NARX network. NARX
netwok is choosen due to its capability and extensive applica-
bility in predicting nonlinear system output. Since, RH and
temperature can be measured online by the developed system;
ML can also be predicted online from the information of RH
and temperature at the inlet and the outlet of withering trough.
For implementing the system in factory no modifications of
the existing troughs are required except for installing the
sensor modules in the trough. The predicted ML shows a
good agreement with actual ML. The maximum mean error in
prediction is −3.6% with respect to the full scale.

As in this technique, ML is predicted online, this technique
can further be utilized for the control of withering rate to
achieve better quality in tea manufacturing. Compared to
the other techniques, it has the promising advantages that it
requires no representative samples of tea leaves and it can be
implemented as the online in situ measurement method.
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